

Institute of Systems Biology and Ecology, Academy of Science of the Czech Republic

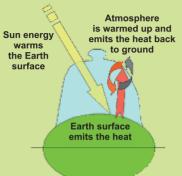
Institute of Forest Ecosystem Research (IFER)

Forest Management

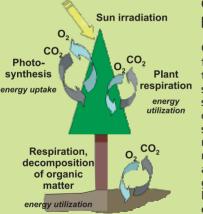
CzechCarbo is a research project focused on the landscape of Czech Republic and its ability to absorb atmospheric carbon dioxide (CO₂), and on possible long-term carbon accumulation in terrestrial ecosystems, hence mitigating the process of global warming.

The project results will aid decision-making on suitable land-use in the country.

The project supports implementation of Kyoto Protocol in the Czech Republic.


The project is supported by the Ministry of Environment of the Czech Republic.

Greenhouse effect of the atmosphere


Some atmospheric gases, especially water vapor and CO_2 , form a greenhouse effect of the atmosphere and they are known as greenhouse gases (GHGs).

GHGs create favorable temperature conditions for living organisms on the Earth. Thus, GHGs concentration is crucial for maintenance of life.

Global warming

Combustion of fossil fuels, utilization of natural gas and oil products and energy and oxygen consumption by human all contribute to additional CO_2 emission into the atmosphere. Thereby, the increasing CO_2 concentration in atmosphere enhances greenhouse effect and contributes to global warming.

CO₂ assimilation by plants

Green plants absorb CO_2 from the atmosphere in the process of photosynthesis. During photosynthesis, atmospheric carbon and other substances form plant biomass, whereas oxygen is released back into the atmosphere. In this way green vegetation enables utilization of solar energy for life.

Kyoto Protocol is an international agreement, under which the signatory parties are committed to reduce their GHG emission into the atmosphere. As a part of this obligation, each party must transparently report its GHG emissions by sources and sinks, i.e. the amount of emitted CO_2 as well as the amount of fixed CO_2 by different landscape ecosystems, especially by forests. The methodological approaches for CO_2 assessment and reporting needs to be in agreement with the internationally adopted good practice, considering the specific national conditions. Scientific research should be used to support carbon stock and stock change assessment for different types of terrestrial ecosystems.

CzechCarbo

"Study of carbon cycle in terrestrial ecosystems of the Czech Republic"

project No. VaV/640/18/03

Scientific aims:

- to evaluate the ability of different ecosystems of the country to fix atmospheric CO,
- to formulate the likely scenarios of climate change for the conditions of the Czech Republic
- to study processes of carbon cycle in relation to climatic and other environmental conditions
- to evaluate management options for enhanced CO_2 fixation in different types of ecosystems

• to assess the current role of terrestrial ecosystems in the country on the total CO_2 balance and be able to predict its development in relation to land use

Socioeconomic aims:

• to propose suitable management practices in the landscape (forestry and agriculture) to maintain and eventually enhance the capacity of landscape for CO₂ sequestration

• to estimate social, cultural and economical implications in relation to changes in landscape structure and function

International obligations:

• to prepare workable methodology for evaluation of landscape as for its contribution to carbon balance

• to support the requirements of the United Nations Framework Convention on Climate Change and its Kyoto Protocol in transparent estimation of emissions by sources and sinks from the sector of land use, land-use change and forestry (LULUCF)

Political objectives:

• to provide a scientific basis for policy making including decisions on governmental subsidies for measures to enhance the capacity of landscape to fix atmospheric CO₂

Instrument for the measurement of photosynthesis rate.

Application of automatic CO, flux measurement system.

Study of ecosystem carbon fluxes and physiological mechanisms controlling carbon assimilation

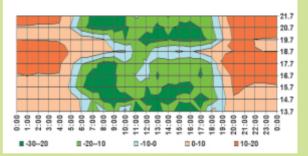
 investigation of basic physiological processes in plants (photosynthesis, respiration, transpiration, growth etc.)

• long-term cultivation of plants in the atmosphere with elevated CO₂ concentration

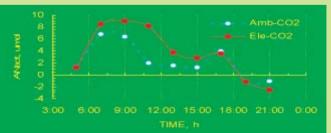
 monitoring of microclimatic conditions in different types of terrestrial ecosystem

• direct measurements of CO₂ uptake and efflux in the most common ecosystems

Outputs


 evaluation of carbon sequestration capacity in different types of ecosystems

 determination of biomass increment and its seasonal dynamics

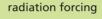

- evaluation of climate change impacts on biomass increment
- measured data for verification of mathematical models simulating ecosystem production

Eddy-covariance system for the measurement of energy and substances fluxes between the boundary layer of the atmosphere and the ecosystem.

Carbon uptake (blue to dark-green) and release (pink to red) by the spruce stand at Bílý Kříž, Beskydy Mts. (kg C per hectare). One hour sums over the summer days are presented.

Daily course of CO₂ assimilation rate in Norway spruce cultivated under ambient (365ppm, Amb-CO₂) and elevated (700ppm, Ele-CO₃) atmospheric CO₃ concentration.

Glass domes with adjustable windows used for the simulation of elevated CO, concentration in the atmosphere (Bílý Kříž, Beskydy Mts.).

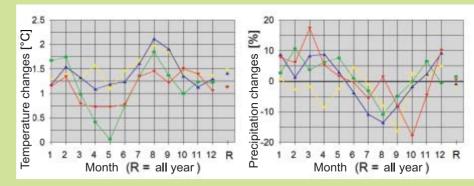

Climate change scenarios for the Czech Republic

Development of the climate change scenario

emission scenario

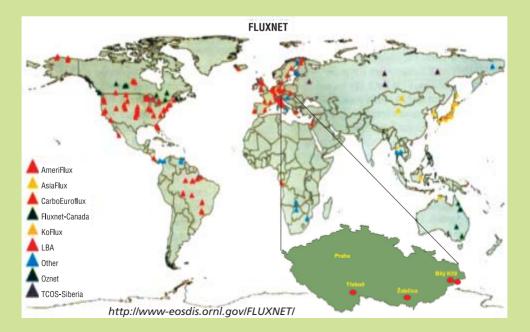
concentration of greenhouse gases

 \checkmark



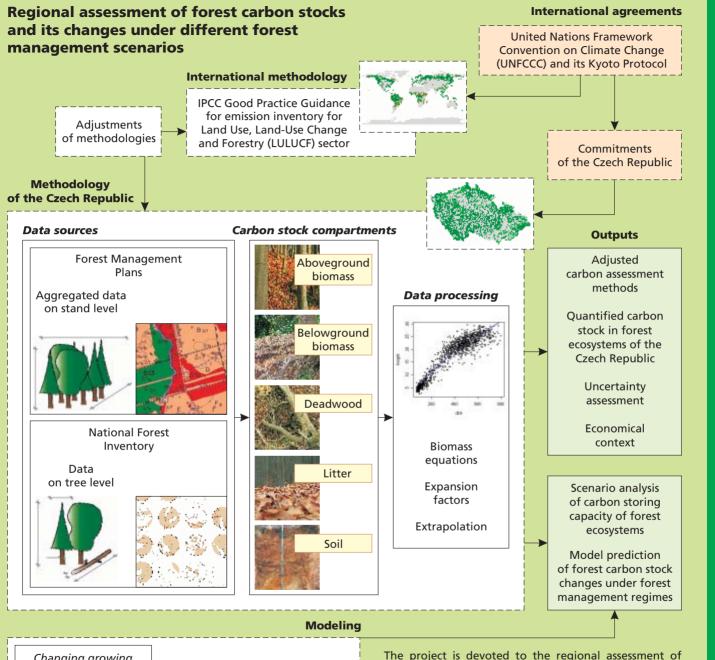
changes in global climate

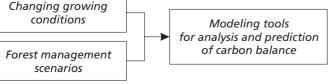
regional climate change scenario



Scenarios of temperature and precipitation changes for CR according to four global climate models. The changes relate to a 1 °C rise in global temperature.

Changes in global temperature (with respect to 1961-90 period; lower-upper estimate) according to MAGICC model.


Emission scenario	2050	2100
Optimistic	+0.8 až +1.6	+1.2 až +2.8
Pessimistic	+1.0 až +2.0	+2.0 až +4.3


Climate change scenarios represent expected changes in selected climatic variables. The scenarios are typically based on comparison of GCM outputs valid for the future vs. present climates, the changes use to be defined separately for individual months. Annual cycles of the climatic variables for the future climate are obtained by applying the scenario changes to the observed present climate annual cycles.

Incorporation of the CZECHCARBO project into the global measurement network within the FLUXNET program

Majority of research programs dealing with carbon cycle are internationally coordinated. The FLUXNET program includes more than 200 points all over the world, where continuous CO_2 , water vapor and energy exchange measurements between ground surface and atmosphere are realized. The CZECHCARBO net of measuring points is part of CARBOEUROFLUX.

The project is devoted to the regional assessment of carbon stock and carbon stock changes in relation to the international agreements and commitments of the Czech Republic. Models are used to analyze the effect of likely management scenarios on carbon stock development, which could be used for policy and planning in land-use and forestry sector. **CARBON BUDGET**

े जाल का जीवे

Proposals of measures to increase fixation and accumulation of carbon in studied ecosystem types:

Starting points of proposals

• basic space and time dynamics of carbon cycle in the studied ecosystem types (forest, meadow, wetland, pond, agro-ecosystem) with different management treatments

• database of plant species significant in their capacity to fix atmospheric CO₂ according to the site carrying capacity and management techniques, including climate change conditions

pond Třeboň

wetland Třeboň

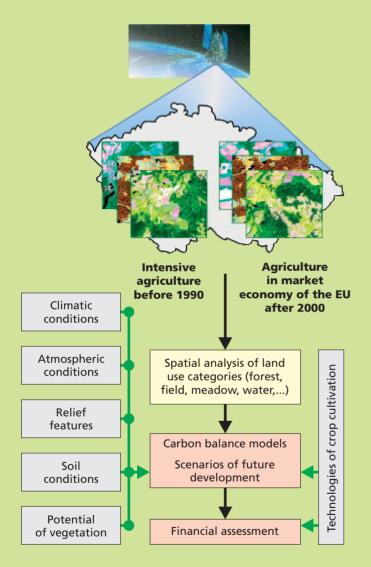
Proposals of measures

- methods to control natural development of organisms
- land use changes

Nové Hrady

 management of extensively and intensively exploited areas

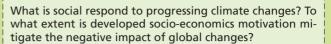
• control technique of the level of underground waters as a regulator of organic matter amount in the soil

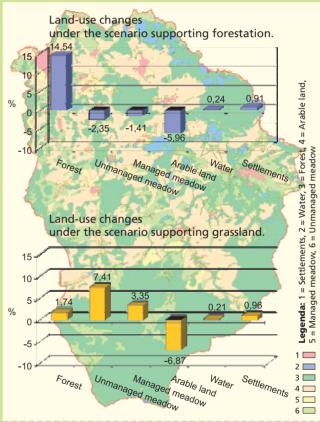


Verification by way of regional study in the upper part of watershed Stropnice

 \bullet analysis of $\rm CO_2$ sources in the territory and possibilities of its fixation in organic biomass in connection with future energetic policy

• proposals of measures to increase the amount of CO_2 fixed in plant biomass of forest, meadow, wetland, pond, and agro-ecosystem in model territory


Remote sensing and geographical information systems in carbon balance models a regional scale


Knowledge of carbon sequestration by vegetation, together with topology of land use, and stand conditions (GIS layers) enable:

- to design a strategy of land use with respect to long term carbon sequestration
- to evaluate economic impacts of designed strategies

Social, cultural and economic outcomes of global climate changes in relationships with changing land-use

Group of experts estimates influence of economical subsidies for increasing CO_2 absorption in forests and grasslands in terms of potential land-use changes in Nové Hrady area, approx. 220 km².

Socio-economical results concern climate changes will be used for quantitative analysis of representative landscape patterns.

Presented regional study shows relatively great increasing forest area following by non-farmed grasslands according experts' estimation.

Contacts and other information

Applicant

Institute of Systems Bilogy and Ecology, Academy of Sciences of the Czech Republic Na Sádkách 7, 370 05 České Budějovice http://www.uek.cas.cz

Institute is a governmental organization focused on basic and applied research of the landscape using the system approach.

Coordinator: Prof. RNDr. Ing. Michal V. Marek, DrSc. e-mail: emarek@brno.cas.cz

1st co-applicant

IFER Institute of Forest Ecosystem Research Areál 1. jílovské a.s. 1544 254 01 Jílové u Prahy http://www.ifer.cz

IFER is an independent institute devoted to forest research and its application.

Sub-contractor: Doc. Ing. Emil Cienciala, Ph.D. e-mail: Emil.Cienciala@ifer.cz

2nd co-applicant

Forest Management Institute Nábřežní 1326, 250 01 Brandýs nad Labem http://www.uhul.cz

Institute is a governmental organization established by the Ministry of Agriculture of the Czech Republic.

Sub-contractor: Ing. Vladimír Henžlík e-mail: Henzlik@uhul.cz

Collaborating organizations

Faculty of Forestry and Wood Technology, Mendel University of Agriculture and Forestry Brno http://www.ldf.mendelu.cz/

Czech Bioclimatological Society http://www.chmi.cz/meteo/CBKS/index.htm

Laboratory of Applied Ecology, Faculty of Agriculture, University of South Bohemia České Budějovice http://home.zf.jcu.cz/public/departments/lae

Faculty of Agriculture, Mendel University of Agriculture and Forestry Brno http://www.mendelu.cz/af/

Czech Hydrometeorological Institute http://www.chmi.cz

ENKI o.p.s. http://www.enki.cz/

Project sponsor

Ministry of Environment of the Czech Republic Vršovická 65 100 10 Praha 10 http://www.env.cz

Supervision: Ing. Tomáš Staněk, CSc. e-mail: Tomas_Stanek@env.cz

Preparation and press

Čajkovského 1511 738 01 Frýdek-Místek e-mail: tiskarnaklein@tiskarnaklein.cz http://www.tiskarnaklein.cz